Last updated: 2022-05-12
Checks: 7 0
Knit directory:
diamantopoulou-ctc-dynamics/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20220425)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version a747daf. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: analysis/0_differential_expression_gsea_gsva.md
Untracked: analysis/about.md
Untracked: analysis/br16_dge.md
Untracked: analysis/br16_pca.md
Untracked: analysis/core_gene_sets.md
Untracked: analysis/gsea_across_models.md
Untracked: analysis/index.md
Untracked: analysis/license.md
Untracked: analysis/patients_ctc_counts_distribution.md
Untracked: data/differential_expression/
Untracked: data/patients/
Untracked: data/resources/
Untracked: data/sce/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/core_gene_sets.Rmd
) and
HTML (docs/core_gene_sets.html
) files. If you’ve configured
a remote Git repository (see ?wflow_git_remote
), click on
the hyperlinks in the table below to view the files as they were in that
past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 1fc87b5 | fcg-bio | 2022-05-10 | Build site. |
html | 8fb5513 | fcg-bio | 2022-05-10 | Build site. |
html | 8acaa64 | fcg-bio | 2022-04-26 | Build site. |
Rmd | 545ee28 | fcg-bio | 2022-04-26 | release v1.0 |
html | 74b1891 | fcg-bio | 2022-04-26 | Build site. |
html | c0865c6 | fcg-bio | 2022-04-26 | Build site. |
html | a136590 | fcg-bio | 2022-04-26 | Build site. |
html | bfb622b | fcg-bio | 2022-04-26 | Build site. |
html | 1006c84 | fcg-bio | 2022-04-26 | Build site. |
Rmd | 0ded9f5 | fcg-bio | 2022-04-26 | added final code |
Setup environment
::opts_chunk$set(results='asis', echo=TRUE, message=FALSE, warning=FALSE, error=FALSE, fig.align = 'center', fig.width = 3.5, fig.asp = 0.618, dpi = 600, dev = c("png", "pdf"), fig.showtext = TRUE)
knitr
options(stringsAsFactors = FALSE)
Load packages
library(tidyverse)
library(showtext)
library(cowplot)
library(scater)
library(ggbeeswarm)
library(ggpubr)
library(ggrepel)
Set font family for figures
font_add("Helvetica", "./configuration/fonts/Helvetica.ttc")
showtext_auto()
Load ggplot theme
source("./configuration/rmarkdown/ggplot_theme.R")
Load color palettes
source("./configuration/rmarkdown/color_palettes.R")
Load shared variables
source("./configuration/rmarkdown/shared_variables.R")
Load functions
source('./code/R-functions/gse_report.r')
<- function(x) x %>% gsub('REACTOME_', '', .) %>% gsub('WP_', '', .) %>% gsub('BIOCARTA_', '', .) %>% gsub('KEGG_', '', .) %>% gsub('PID_', '', .) %>% gsub('GOBP_', '', .) %>% gsub('_', ' ', .) clean_msigdb_names
Load NSG-BR16 data
<- readRDS(file.path(params$sce_dir, 'sce_br16.rds'))
sce_br16 $sample_type <- recode(sce_br16$sample_type, ctc_single = 'Single CTCs', ctc_cluster = 'CTC-clusters', ctc_cluster_wbc = 'CTC-WBC Clusters')
sce_br16<- readRDS(file.path('./data/differential_expression/br16', 'dge_edgeR_QLF_robust.rds'))
dge_br16 <- dge_br16$results dge_br16
Load SingleCellExpression raw data
<- readRDS(file.path(params$sce_dir, 'sce_raw.rds')) sce_raw
Initial configuration
<- sce_br16
use_sce <- dge_br16 use_dge
Read core circadian genes list
<- key_circadian_genes[key_circadian_genes %in% rowData(use_sce)$gene_name]
key_circadian_genes_sel <- rowData(use_sce)[match(key_circadian_genes_sel, rowData(use_sce)$gene_name), 'gene_id'] %>% set_names(names(key_circadian_genes_sel)) %>% gsub("\\.[0-9]+", "", .) key_circadian_genes_ens
Subset of SCE and DGE objects
<- use_sce[key_circadian_genes_ens,]
use_sce rownames(use_sce) <- names(key_circadian_genes_sel)
<- use_dge[key_circadian_genes_ens,]
use_dge rownames(use_dge) <- names(key_circadian_genes_sel)
$gene <- names(key_circadian_genes_sel)
use_dge<- use_dge %>%
use_dge mutate(group1 = 'active', group2 = 'resting') %>% # for stat_pvalue_manual
arrange(PValue) %>%
mutate(
gene = factor(gene, levels = gene)
)
Plot showing the expression distribution of core circadian genes in CTCs from NSG-CDX-BR16 mice. The fold change (FC, in log2 scale) and P value from the differential expression analysis are shown for each gene.
<- logcounts(use_sce) %>% data.frame %>% rownames_to_column('gene') %>% pivot_longer(-gene, names_to = 'sample_alias', values_to = 'exprs')
expr_long <- colData(use_sce) %>%
use_data %>%
data.frame ::select(sample_alias, timepoint, sample_type) %>%
dplyrleft_join(expr_long) %>%
mutate(
gene = factor(gene, levels = use_dge$gene),
timepoint = recode(timepoint, resting = 'Rest phase', active = 'Active phase')
)
<- c(0, 2 + max(use_data$exprs))
use_ylim <- seq(use_ylim[1], max(use_data$exprs), by = 2)
use_breaks <- use_dge %>%
use_dge mutate(
group1 = 'Rest phase', group2 = 'Active phase',
label = paste0('FC=', round(logFC,2),", P= ", format.pval(PValue, 1))
)'Rest phase'] <- timepoint_palette['resting']
timepoint_palette['Active phase'] <- timepoint_palette['active']
timepoint_palette[
%>%
use_data ggplot(aes(timepoint, exprs, color = timepoint)) +
geom_quasirandom(alpha = 0.6, wdth = 0.4, groupOnX=TRUE, bandwidth=1) +
geom_violin(color = 'black', alpha = 0, scale = "width", width = 0.8, draw_quantiles = 0.5) +
scale_color_manual(values =timepoint_palette) +
facet_wrap(~gene, ncol = 3) +
stat_pvalue_manual(use_dge, label = "label", y.position = 9, size = geom_text_size) +
scale_y_continuous(limits = use_ylim, breaks = use_breaks) +
guides(color = FALSE) +
labs(
x = '',
y = expression(paste("lo", g[2],"(Normalized counts)"))
+
) background_grid(minor = 'none', major = 'y', size.major = 0.2)
Version | Author | Date |
---|---|---|
1006c84 | fcg-bio | 2022-04-26 |
Density plot showing the distribution of the average expression (log2 counts per million) of genes in CTCs from NSG-CDX-BR16 mice. Core circadian genes are labeled in the X-axis.
<- data.frame(
avg_counts median_expr = logcounts(sce_br16) %>% rowMedians,
mean_expr = logcounts(sce_br16) %>% rowMeans,
gene_name = rowData(sce_br16)$gene_name
)
<- data.frame(
avg_counts_circadian median_expr = logcounts(use_sce) %>% rowMedians,
mean_expr = logcounts(use_sce) %>% rowMeans
%>%
) rownames_to_column('gene_name')
ggplot(avg_counts, aes(x = median_expr)) +
geom_density(fill="#dbd8be") +
geom_vline(aes(xintercept=median(median_expr)), color="#043665", linetype="dashed", size=0.5) +
geom_point(
data = avg_counts_circadian,
mapping = aes(y = 0.01, x = median_expr, label = gene_name, color = keep),
alpha = 0.8,
color = '#d37d0a') +
geom_text_repel(
data = avg_counts_circadian,
mapping = aes(y = 0.01, x = median_expr, label = gene_name),
force_pull = 0, # do not pull toward data points
nudge_y = 0.02,
direction = "x",
angle = 90,
hjust = 0,
segment.size = 0.2,
max.iter = 1e4,
max.time = 1,
size = geom_text_size
+
) labs(
x = 'Median expression (logcounts)',
y = 'Density',
caption = 'Blue dashed line represents the median across all genes'
)
Version | Author | Date |
---|---|---|
1006c84 | fcg-bio | 2022-04-26 |
Plot showing the expression distribution of TEAD genes in CTCs from NSG-CDX-BR16 mice. The fold change (FC, in log2 scale) and P value from the differential expression analysis are shown for each gene.
<- sce_br16
use_sce <- dge_br16
use_dge
<- grep('TEAD[0-9]', rowData(use_sce)$gene_name, value = TRUE)
use_genes_name <- grepl('TEAD[0-9]', rowData(use_sce)$gene_name)
use_rows <- use_sce[use_rows,]
sel_sce <- rownames(sel_sce)
use_features rownames(sel_sce) <- use_genes_name
<- use_dge[use_features,]
sel_dge rownames(sel_dge) <- use_genes_name
$gene <- rownames(sel_dge)
sel_dge<- sel_dge %>%
sel_dge mutate(group1 = 'active', group2 = 'resting') %>% # for stat_pvalue_manual
arrange(PValue) %>%
mutate(
gene = factor(gene, levels = gene)
)
<- logcounts(sel_sce) %>% data.frame %>% rownames_to_column('gene') %>% pivot_longer(-gene, names_to = 'sample_alias', values_to = 'exprs')
expr_long <- colData(sel_sce) %>%
use_data %>%
data.frame ::select(sample_alias, timepoint, sample_type) %>%
dplyrleft_join(expr_long) %>%
mutate(
gene = factor(gene, levels = sel_dge$gene),
timepoint = recode(timepoint, resting = 'Rest phase', active = 'Active phase')
)
<- c(0, 1 + max(use_data$exprs))
use_ylim <- seq(use_ylim[1], max(use_data$exprs), by = 2)
use_breaks <- sel_dge %>%
sel_dge mutate(
group1 = 'Rest phase', group2 = 'Active phase',
label = paste0('FC=', round(logFC,2),", P= ", format.pval(PValue, 1))
)'Rest phase'] <- timepoint_palette['resting']
timepoint_palette['Active phase'] <- timepoint_palette['active']
timepoint_palette[
%>%
use_data ggplot(aes(timepoint, exprs, color = timepoint)) +
geom_quasirandom(alpha = 0.6, wdth = 0.4, groupOnX=TRUE, bandwidth=1) +
geom_violin(color = 'black', alpha = 0, scale = "width", width = 0.8, draw_quantiles = 0.5) +
scale_color_manual(values =timepoint_palette) +
facet_wrap(~gene, ncol = 3) +
stat_pvalue_manual(sel_dge, label = "label", y.position = 0.5+max(use_data$exprs), size = geom_text_size) +
scale_y_continuous(limits = use_ylim, breaks = use_breaks) +
guides(color = 'none') +
labs(
x = '',
y = expression(paste("lo", g[2],"(Normalized counts)"))
+
) background_grid(minor = 'none', major = 'y', size.major = 0.2)
Version | Author | Date |
---|---|---|
1006c84 | fcg-bio | 2022-04-26 |
Density plots showing the distribution of the average expression (log2 counts per million) of genes encoding for receptors of circadian-regulated hormones, growth factors or molecules in CTCs from NSG-CDX-BR16 mice, NSG-LM2 mice and patients with breast cancer. Genes for the glucocorticoid receptor, androgen receptor and insulin receptor are labeled in the X-axis.
Load list of genes
<- read_csv(file = './data/resources/HGNC/group-71-nuclear_hormone_receptors.csv', skip = 1)$`Approved symbol`
use_genes_1 <- read_tsv(file = './data/resources/user_input/circadian_regulated_hormones_and_gf.txt', col_names = 'genes')$genes
use_genes_2 <- c(use_genes_1, use_genes_2, c('INSR', 'IGF1R', 'IGF2R', 'NR2C2', 'AR')) %>% unique
use_genes <- use_genes[!use_genes %in% rowData(sce_raw)$gene_name] rm_genes
Plot expression distributions
<- rowData(sce_raw)$gene_name %in% use_genes
use_rows <- sce_raw[use_rows,]
use_sce rownames(use_sce) <- rowData(use_sce)$gene_name
<- assay(use_sce, 'logcpm') %>% data.frame %>% rownames_to_column('gene_name') %>% pivot_longer(cols = -gene_name, names_to = 'sample_alias', values_to = 'exprs') %>%
use_data left_join(colData(use_sce) %>% data.frame) %>%
mutate(
genes_sel = gene_name %in% c('INSR', 'IGF1R', 'IGF2R', 'NR2C2', 'AR')
)
<- use_data %>% group_by(donor, gene_name) %>% summarise(avrg_exprs = mean(exprs))
mean_data <- mean_data %>% filter(gene_name %in% c('INSR', 'IGF1R', 'IGF2R', 'NR2C2', 'AR'))
mean_data_selected %>%
mean_data ggplot(aes(avrg_exprs)) +
geom_density(fill="#dbd8be") +
geom_vline(aes(xintercept=mean(avrg_exprs)), color="#043665", linetype="dashed", size=0.5) +
facet_grid(rows = vars(donor), scales = 'free') +
geom_point(
data = mean_data_selected,
mapping = aes(y = 0.01, x = avrg_exprs, label = gene_name),
alpha = 0.8,
color = '#d37d0a') +
geom_text_repel(
mean_data_selected, mapping = aes(y = 0.01, x = avrg_exprs, label = gene_name),
force_pull = 0, # do not pull toward data points
nudge_y = 0.4,
direction = "x",
angle = 90,
hjust = 0,
segment.size = 0.2,
max.iter = 1e4,
max.time = 1,
size = geom_text_size) +
labs(
x = expression(paste("Average lo", g[2],"(counts per million reads)")),
y = 'Density',
caption = 'Blue dashed line represents the average across all genes'
)
Version | Author | Date |
---|---|---|
1006c84 | fcg-bio | 2022-04-26 |
sessionInfo()
R version 4.1.0 (2021-05-18) Platform: x86_64-apple-darwin17.0 (64-bit) Running under: macOS Big Sur 10.16
Matrix products: default BLAS: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.dylib LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
locale: [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages: [1] parallel stats4 stats graphics grDevices utils datasets [8] methods base
other attached packages: [1] ggrepel_0.9.1 ggpubr_0.4.0
[3] ggbeeswarm_0.6.0 scater_1.20.1
[5] scuttle_1.2.1 SingleCellExperiment_1.14.1 [7]
SummarizedExperiment_1.22.0 Biobase_2.52.0
[9] GenomicRanges_1.44.0 GenomeInfoDb_1.28.4
[11] IRanges_2.26.0 S4Vectors_0.30.2
[13] BiocGenerics_0.38.0 MatrixGenerics_1.4.3
[15] matrixStats_0.61.0 cowplot_1.1.1
[17] showtext_0.9-4 showtextdb_3.0
[19] sysfonts_0.8.5 forcats_0.5.1
[21] stringr_1.4.0 dplyr_1.0.7
[23] purrr_0.3.4 readr_2.0.2
[25] tidyr_1.1.4 tibble_3.1.5
[27] ggplot2_3.3.5 tidyverse_1.3.1
[29] workflowr_1.6.2
loaded via a namespace (and not attached): [1] colorspace_2.0-2
ggsignif_0.6.3
[3] rio_0.5.27 ellipsis_0.3.2
[5] rprojroot_2.0.2 XVector_0.32.0
[7] BiocNeighbors_1.10.0 fs_1.5.0
[9] rstudioapi_0.13 farver_2.1.0
[11] bit64_4.0.5 fansi_0.5.0
[13] lubridate_1.8.0 xml2_1.3.2
[15] sparseMatrixStats_1.4.2 knitr_1.36
[17] jsonlite_1.7.2 broom_0.7.10
[19] dbplyr_2.1.1 compiler_4.1.0
[21] httr_1.4.2 backports_1.3.0
[23] assertthat_0.2.1 Matrix_1.3-4
[25] fastmap_1.1.0 cli_3.1.0
[27] later_1.3.0 BiocSingular_1.8.1
[29] htmltools_0.5.2 tools_4.1.0
[31] rsvd_1.0.5 gtable_0.3.0
[33] glue_1.4.2 GenomeInfoDbData_1.2.6
[35] Rcpp_1.0.7 carData_3.0-4
[37] cellranger_1.1.0 jquerylib_0.1.4
[39] vctrs_0.3.8 DelayedMatrixStats_1.14.3 [41] xfun_0.27
openxlsx_4.2.4
[43] beachmat_2.8.1 rvest_1.0.2
[45] lifecycle_1.0.1 irlba_2.3.3
[47] rstatix_0.7.0 zlibbioc_1.38.0
[49] scales_1.1.1 vroom_1.5.5
[51] hms_1.1.1 promises_1.2.0.1
[53] curl_4.3.2 yaml_2.2.1
[55] gridExtra_2.3 sass_0.4.0
[57] stringi_1.7.5 highr_0.9
[59] ScaledMatrix_1.0.0 zip_2.2.0
[61] BiocParallel_1.26.2 rlang_0.4.12
[63] pkgconfig_2.0.3 bitops_1.0-7
[65] evaluate_0.14 lattice_0.20-45
[67] labeling_0.4.2 bit_4.0.4
[69] tidyselect_1.1.1 magrittr_2.0.1
[71] R6_2.5.1 generics_0.1.1
[73] DelayedArray_0.18.0 DBI_1.1.1
[75] foreign_0.8-81 pillar_1.6.4
[77] haven_2.4.3 whisker_0.4
[79] withr_2.4.2 abind_1.4-5
[81] RCurl_1.98-1.5 car_3.0-11
[83] modelr_0.1.8 crayon_1.4.2
[85] utf8_1.2.2 tzdb_0.2.0
[87] rmarkdown_2.11 viridis_0.6.2
[89] grid_4.1.0 readxl_1.3.1
[91] data.table_1.14.2 git2r_0.28.0
[93] reprex_2.0.1 digest_0.6.28
[95] httpuv_1.6.3 munsell_0.5.0
[97] beeswarm_0.4.0 viridisLite_0.4.0
[99] vipor_0.4.5 bslib_0.3.1